
Programming
environment and

compilations

Zhengji Zhao
User Engagement Group

New User Training, Bekerley CA
Jan 25, 2019

We will talk about only

● Compilations for Cori (Haswell and KNL nodes) and Edison
● Compile/link lines

Compiler +
Compiler Flags +
–I/path/to/headers +
–L/path/to/library –l<library>

● Available libraries, linking examples
● Users will need to apply the above info to their own build

systems.
- 2 -

Cori Haswell, KNL and Edison Configurations

● Cori KNL and Haswell – a Cray XC40
○ Cori has 9688 single-socket Intel® Xeon Phi™ Processor 7250 ("Knights Landing") nodes

@1.4 GHz with 68 cores (272 threads) per node, two 512 bit vector units per core, and 16 GB
high bandwidth on-package memory (MCDRAM) with 5X the bandwidth of DDR4 DRAM
memory (>400 GB/sec) and 96 GB DDR4 2400 MHz memory per node.

○ In addition, Cori has 2388 dual-socket 16-core Intel® Xeon™ Processor E5-2698 v3
("Haswell") nodes @2.3GHz with 32 cores (64 threads) per node, two 256 bit vector units per
core, 128 GB 2133 MHz DDR4 memory.

○ Cori nodes are interconnected with Cray’s Aries network with Dragonfly topology.

● Edison – a Cray XC30
○ Edison has 5586 dual-socket 12-core Intel(R) Xeon(R) CPU E5-2695 v2 (“Ivy Bridge”) nodes

@2.40GHz with 24 cores (48 threads) per node, two 256 bit vector units per core, 64 GB
DDR3 1866 MHz memory. Edison nodes are interconnected with Cray’s Aries network with
Dragonfly topology.

- 3 -

http://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz
http://ark.intel.com/products/81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2_30-GHz
http://ark.intel.com/products/75281/Intel-Xeon-Processor-E5-2695-v2-30M-Cache-2_40-GHz?q=E5-2695%20v2

Compilations on Cori and Edison are very similar

● Three programming environments are supported
○ Intel, GNU and Cray compilers are available on Cori. Intel is the default.

○ PrgEnv-intel, PrgEnv-gnu, and PrgEnv-cray loads the corresponding
programming environment which includes the compilers and matching
libraries.

○ Using module swap PrgEnv-Intel PrgEnv-cray to swap programing
environment.

○ Compiler wrappers, ftn, cc and CC, are recommended instead of the
native compiler invocations.

Compilations on Cori and Edison are very similar

○ Default environment loads craype-haswell/craype-ivybridge module on
Cori/Edison, which sets the env CRAY_CPU_TARGET to
haswell/ivybridge for Cori/Edison – taking care of the architectural
difference when compiling with the compiler wrappers.

○ Cross compilation: compiling for compute nodes from login nodes

Default programming environment on Cori:

Compilations on Cori and Edison are very similar

● To compile for Cori Haswell and Edison:

● Note, the compiler wrappers invoke the Intel, GNU, or
Cray compilers under the hood.

#to use Intel compiler:

ftn –O3 mycode.f90. # Fortran:
cc –O3 mycode.c # for C
CC –O3 myC++code.C. # for C++

#to use GNU compiler
module swap PrgEnv-intel PrgEnv-gnu
ftn –O3 mycode.f90. # Fortran:
cc –O3 mycode.c # for C
CC –O3 myC++code.C. # for C++

To compile for Cori KNL

● Unlike Edison, Cori has two types of compute nodes,
Haswell, and KNL, and applications are compiled for both
Haswell and KNL nodes from the login nodes (Haswell
nodes).

● do module swap craype-haswell craype-mic-knl before
compiling for Cori KNL nodes

module swap craype-haswell craype-mic-knl
ftn –O3 mycode.f90. # Fortran:
cc –O3 mycode.c # for C
CC –O3 myC++code.C. # for C++

Binary compatibility

○ Edison binaries runs on Cori Haswell, and KNL; Haswell Binaries run on KNL

○ We recommend a separate build for each platform for optimal performance.

- 8 -

Build system Edison Cori Haswell Cori KNL

Edison ✅ ✅ ✅

Cori Haswell ✅ ✅

Cori KNL ✅

Compiler recommendations

● Will not recommend any specific compiler

○ Intel - better chance of getting processor specific optimizations, especially for
KNL

○ Cray compiler – many new features and optimizations, especially with Fortran;
useful tools like reveal work with Cray compiler only

○ GNU - widely used by open software

● Start with the compilers that vendor/code developers used
so to minimize the chance to hit the compiler and code bugs,
then explore different compilers for optimal performance.

- 9 -

Compiler flags

● Validity check after compilation
● Compilers’ default behavior could vary between compilers

○ Default number of OpenMP threads used is all CPU slots available for Intel
and GNU compilers; 1 for Cray compiler.

- 10 -

Intel GNU Cray Description/ Comment

-O2 -O0 -O2 default

default , or –O3 -O2 or -O3,-Ofast default recommended

-qopenmp -fopenmp default, or –h omp OpenMP

-g -g -g debug

-v -v -v verbose

Compiler wrappers, ftn, cc and CC, are recommended

● Use ftn, cc, and CC to compile Fortran, C and C++ codes,
respectively, instead of the underlying native compilers,
such as ifort, icc, icpc, gfortran, gcc, g++, etc.
○ The compiler wrappers wraps the underlying compilers with the additional

compiler and linker flags depending on the modules loaded in the
environment

○ The same compiler wrapper command (e.g. ftn) is used to invoke any
compilers supported on the system (Intel, GNU, Cray)

● Compiler wrappers do cross compilation
○ Compiling on login nodes to run on compute nodes

- 11 -

Compiler wrappers, ftn, cc and CC, are recommended
○ Use the –host=x86_64 configure option when compiling for KNL from a login

node
○ To compile on a KNL node, do salloc –N 1 –q interactive –C knl –t 4:00:00 to

get on a compute node

● Compilers wrappers link statically by default
○ Preferred for performance at scale

● Use –dynamic or set an environment variable
CRAYPE_LINK_TYPE=dynamic to link dynamically
○ A dynamically linked executable may take a some time to load shared

libraries when running with a large number of processes

● User provided options take precedence
- 12 -

Why compiler wrappers?

● They include the architecture specific compiler flags into the
compilation/link line automatically.

● Automatically add the header and library paths and libraries
on the compilation/link lines
○ Compiler wrappers use the pkg-config tools to dynamically detect paths and libs from

the environment (working with cray modules and some NERSC modules)
○ The architecture specific builds of libraries will be linked into

- 13 -

*) for the latest Intel compilers, -march=knl,haswell,ivybridge can be used instead of –xcode.

Intel*) GNU Cray Module

Cori KNL -xMIC-AVX512 -march=knl -h cpu=mic-knl craype-mic-knl

Cori Haswell -xCORE-AVX2 -march=core-avx2 -h cpu=haswell craype-haswell

Edison Ivy Bridge -xCORE-AVX-I -march=corei7-avx -h cpu=ivybridge craype-ivybridge

What do compiler wrappers link by default?
● Depending on the modules loaded, compiler wrappers link to the MPI,

LAPACK/BLAS/ScaLAPACK libraries, and more automatically

● Library names could be different from what you used before

- 14 -

More on the verbose output from compiler wrappers

- 15 -
Note, -Wl,--start-group … -Wl,--end-group for static linking

Available libraries

● Cray supports many software packages – Cray Developer
Toolkits (CDT)
○ Access via modules, type “module avail” or “module avail –S” to see the available

modules
○ There are different builds for different compilers
○ Programming environment modules allow the libraries built with the matching

compilers to be linked to

● NERSC also supports many libraries
○ Some of them interact with the Cray compiler wrappers while many of them do not.

● Where are the libraries ?
○ Use “module show <module name> “ to see the installation paths
○ ls –l <installation_path> to see the library files

- 16 -

Examples of linking to the Cray provided libraries

● Linking to Cray MPI and Cray Scientific libraries are
automatic by default if compiler wrappers are used

CC parallel_hello.cpp or ftn dgemmx1.f90

● Linking to HDF5 and NETCDF libraries are automatic, user
just need to load the cray-hdf5 or cray-netcdf modules

 module load cray-hdf5; cc h5write.c
○ Note The library name could be different. Using the –v option to see the library names

and other detailed link line information.

- 17 -
Liking example

Examples of linking to the Cray provided libraries

● Linking to PETSc libraries are automatic, but users need to
choose a proper module (real/complex,32/64 bit integer)
○ E.g., module load cray-petsc-complex-64
○ Use cc –v test1.c to see the linking detail

● Linking to fftw libraries – fftw 3 is the default
○ module load cray-fftw
○ Loading the cray-fftw module always links to the pthread version of the library,

-lfftw3f_mpi -lfftw3f_threads -lfftw3f -lfftw3_mpi -lfftw3_threads -lfftw3, to link with
OpenMP implementation, need to manually provide the libraries.

- 18 -
Liking example

Examples of linking to the NERSC provided library modules

● Some of the NERSC provided modulefiles are written to interact
with the Cray compiler wrappers, e.g., elpa module on Cori

module load elpa
ftn –qopenmp –v test2.f90 # this will automatically link to elpa and MKL ScaLAPACK
libraries

○ Type module show <module name> to check if the envs <libname>_PKGCONFIG_LIBS,
PE_PKGCONFIG_PRODUCTS, and PKG_CONFIG_PATH are defined in the modulefile,
which compiler wrappers look for.

● Most of the NERSC provided modulefiles do not interact with the compiler
wrappers, user need to provide the include path and library path and
libraries manually, e.g. GSL

module load gsl; ftn test3.f90 $GSL
○ GSL is set as -I/usr/common/software/gsl/2.1/intel/include

○ -L/usr/common/software/gsl/2.1/intel/lib -lgsl -lgslcblas
- 19 -

Liking example

Linking to Intel MKL library

● Resource:
○ Intel® Math Kernel Library Link Line Advisor,

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
○ Learn from Intel compiler verbose output,

-mkl={parallel,sequential,cluster}

● For intel compiler, use –mkl flag
○ ftn test1.f90 –mkl # default to parallel –multi-threaded lib
○ The loaded cray-libsci will be ignored if –mkl is used.

- 20-
Liking example

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

Linking to Intel MKL library

● For GNU compiler (e.g., to link to 32-bit integer build):
○ Save the MKLROOT from the Intel compiler module, and then
○ Threaded: -L$MKLROOT/lib/intel64 –Wl,--start-group -lmkl_gf_lp64 -lmkl_gnu_thread

-lmkl_core -liomp5 -Wl,--end-group –lpthread –lm –ldl
○ ScaLAPACK: -L$MKLROOT/lib/intel64 -Wl,--start-group -lmkl_gf_lp64

-lmkl_gnu_thread -lmkl_scalapack_lp64 -lmkl_blacs_intelmpi_lp64 -lmkl_core
-Wl,--end-group -lgomp –lpthread –lm -ldl

○ Note that mkl modules could be out-dated

- 21-
Liking example

Linking to Intel MPI library – Use native compilers

● Cray MPICH libraries are recommended for performance
especially at scale.

● Compiler wrappers links to Cray MPICH libraries.
● However, if you need to link to Intel MPI library, do

module load impi

mpiifort test1.f90
○ Note that the binaries linked to the Intel MPI need to run with srun instead of

mpirun to get a proper process/thread affinity,
http://www.nersc.gov/users/computational-systems/cori/running-jobs/advanced-run
ning-jobs-options/#toc-anchor-6

○ Native Intel compilers link dynamically

- 22 -
Liking example

http://www.nersc.gov/users/computational-systems/cori/running-jobs/advanced-running-jobs-options/#toc-anchor-6
http://www.nersc.gov/users/computational-systems/cori/running-jobs/advanced-running-jobs-options/#toc-anchor-6

Summary

●Compilations for Cori and Edison are very similar
●To compile for Cori KNL, do

– module swap craype-haswell craype-mic-knl

●Use compiler wrappers where possible, they
○ add architecture specific optimization flags
○ link to the Cray MPI and LibSci libraries and other Cray provided libraries

●Use available libraries where possible
○ Use module avail command to check available libraries
○ Use module show <module name> to see the installation paths if needed

●Learn from the compiler verbose output (-v)

Recommended readings

● NERSC website, especially,
○ http://www.nersc.gov/users/computational-systems/cori/programming/compiling-codes-

on-cori/
○ http://www.nersc.gov/users/computational-systems/edison/programming/
○ We are moving user documentation pages to http://docs.nersc.gov,
○ https://docs.nersc.gov/development/compilers/
○ For further compiler optimizations read intel slides: e.g.,

https://www.nersc.gov/users/training/events/intel-compilers-tools-and-libraries-training-
march-6-2018/

● Compiler and linker man pages:
○ ifort, icc, icpc, crayftn,etc
○ man ld (-Wl,-zmuldefs, -Wl,-y<symbol>)

- 24 -

http://www.nersc.gov/users/computational-systems/cori/programming/compiling-codes-on-cori/
http://www.nersc.gov/users/computational-systems/cori/programming/compiling-codes-on-cori/
http://www.nersc.gov/users/computational-systems/edison/programming/
http://docs.nersc.gov/
https://docs.nersc.gov/development/compilers/

Thank You!

Building your application separately for each platform could
be important to get optimal performance. - 26 -

VASP built with the –xMIC-AVX512
flag runs 35% faster than built with
the –xCORE-AVX2 flag on Cori KNL.

